首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1138篇
  免费   73篇
  国内免费   14篇
测绘学   46篇
大气科学   104篇
地球物理   247篇
地质学   398篇
海洋学   87篇
天文学   237篇
综合类   3篇
自然地理   103篇
  2023年   3篇
  2022年   3篇
  2021年   15篇
  2020年   22篇
  2019年   31篇
  2018年   46篇
  2017年   39篇
  2016年   47篇
  2015年   40篇
  2014年   33篇
  2013年   78篇
  2012年   56篇
  2011年   63篇
  2010年   51篇
  2009年   66篇
  2008年   64篇
  2007年   56篇
  2006年   60篇
  2005年   36篇
  2004年   48篇
  2003年   58篇
  2002年   32篇
  2001年   22篇
  2000年   27篇
  1999年   13篇
  1998年   12篇
  1997年   17篇
  1996年   13篇
  1995年   12篇
  1994年   12篇
  1993年   13篇
  1992年   9篇
  1991年   5篇
  1990年   11篇
  1989年   9篇
  1988年   7篇
  1987年   8篇
  1985年   7篇
  1984年   7篇
  1983年   10篇
  1982年   5篇
  1981年   6篇
  1980年   5篇
  1979年   10篇
  1978年   8篇
  1976年   6篇
  1975年   6篇
  1973年   4篇
  1972年   3篇
  1971年   5篇
排序方式: 共有1225条查询结果,搜索用时 31 毫秒
101.
102.
Surficial sediment distribution within Simpson Bay is a function of antecedent bedrock and recently deposited glacial geology, as well as active physical processes both within Simpson Bay and Prince William Sound (PWS). Simpson Bay is a turbid, outwash fjord located in northeastern PWS, Alaska. Freshwater from heavy precipitation, and the melting of high alpine glaciers enter the bay through bay head rivers and small shoreline creeks. The catchment has a high watershed/basin surface area ratio (∼8:1), and easily erodible bedrock that contribute to high sediment loads. The system can be divided into three discrete basins, each with specific morphologic and circulatory characters. Side scan sonar, swath bathymetry, and seismic profiles reveal that bathymetric highs are areas of outcropping glacial surfaces. High backscatter coupled with surface grab samples reveal these surfaces to be composed of coarse sediment and bedrock outcrops. Bathymetric lows are areas of low backscatter, and grab samples reveal these areas to be ponded deposits of organic-rich estuarine muds. The data provide evidence of terminal morainal bank systems, and glacial grounding line deposits at the mouth of the bay and rocky outcrops were identified as subsurface extensions of aerial rocky promontories. Radioisotope analyses of short cores reveal that the bay has an average accumulation rate of approx. 0.5 cm year−1, but that this varies in function of the watershed/basin surface area ratios of the different basins. The interaction of tidal currents and sediment source drives sediment distribution in Simpson Bay. Hydrographic data reveal high spatial variability in surface and bottom currents throughout the bay. Subsurface currents are tide dominated, but generally weak (5–20 cm s−1), while faster currents are found along shorelines, outcrops, and bathymetric highs. Bathymetric data reveal steep slopes with little to no modern sediment throughout the bay, suggesting lack of deposition due to tidal currents.  相似文献   
103.
This paper demonstrates the importance of advective transport of water through permeable estuarine and salt marsh sediments. This transport delivers significant quantities of radium and barium to the coastal ocean; and, in some cases may remove significant quantities of uranium. These conclusions are based on repeated analyses of seven river–estuarine systems from North Carolina to Florida. Fluxes of radium and barium from these river systems are shown to be inadequate to balance the dissolved inventories of these elements in the South Atlantic Bight. The strong interactions that occur between surface and subsurface waters as these rivers encounter coastal marshes lead us to consider these river mouths as marsh-dominated in terms of their chemical fluxes to the ocean. Such interactions between the river and coastal marsh must be considered when estimating fluxes of material between the land and ocean.  相似文献   
104.
Albedos and diameters of three Mars Trojan asteroids   总被引:1,自引:1,他引:0  
We observed the Mars Trojan Asteroids (5261) Eureka and (101429) 1998 VF31 and the candidate Mars Trojan 2001 FR127 at 11.2 and 18.1 microns using Michelle on the Gemini North telescope. We derive diameters of 1.28, 0.78, and <0.52 km, respectively, with corresponding geometric visible albedos of 0.39, 0.32, and >0.14. The albedos for Eureka and 1998 VF31 are consistent with the taxonomic classes and compositions (S(I)/angritic and S(VII)/achondritic, respectively) and implied histories presented in a companion paper by Rivkin et al. Eureka's surface likely has a relatively high thermal inertia, implying a thin regolith that is consistent with predictions and the small size that we derive.  相似文献   
105.
Abar al' Uj (AaU) 012 is a clast‐rich, vesicular impact‐melt (IM) breccia, composed of lithic and mineral clasts set in a very fine‐grained and well‐crystallized matrix. It is a typical feldspathic lunar meteorite, most likely originating from the lunar farside. Bulk composition (31.0 wt% Al2O3, 3.85 wt% FeO) is close to the mean of feldspathic lunar meteorites and Apollo FAN‐suite rocks. The low concentration of incompatible trace elements (0.39 ppm Th, 0.13 ppm U) reflects the absence of a significant KREEP component. Plagioclase is highly anorthitic with a mean of An96.9Ab3.0Or0.1. Bulk rock Mg# is 63 and molar FeO/MnO is 76. The terrestrial age of the meteorite is 33.4 ± 5.2 kyr. AaU 012 contains a ~1.4 × 1.5 mm2 exotic clast different from the lithic clast population which is dominated by clasts of anorthosite breccias. Bulk composition and presence of relatively large vesicles indicate that the clast was most probably formed by an impact into a precursor having nonmare igneous origin most likely related to the rare alkali‐suite rocks. The IM clast is mainly composed of clinopyroxenes, contains a significant amount of cristobalite (9.0 vol%), and has a microcrystalline mesostasis. Although the clast shows similarities in texture and modal mineral abundances with some Apollo pigeonite basalts, it has lower FeO and higher SiO2 than any mare basalt. It also has higher FeO and lower Al2O3 than rocks from the FAN‐ or Mg‐suite. Its lower Mg# (59) compared to Mg‐suite rocks also excludes a relationship with these types of lunar material.  相似文献   
106.
107.
108.
Abstract– We studied the mineralogy, petrology, and bulk, trace element, oxygen, and noble gas isotopic compositions of a composite clast approximately 20 mm in diameter discovered in the Larkman Nunatak (LAR) 04316 aubrite regolith breccia. The clast consists of two lithologies: One is a quench‐textured intergrowth of troilite with spottily zoned metallic Fe,Ni which forms a dendritic or cellular structure. The approximately 30 μm spacings between the Fe,Ni arms yield an estimated cooling rate of this lithology of approximately 25–30 °C s?1. The other is a quench‐textured enstatite‐forsterite‐diopside‐glass vitrophyre lithology. The composition of the clast suggests that it formed at an exceptionally high degree of partial melting, perhaps approaching complete melting, and that the melts from which the composite clast crystallized were quenched from a temperature of approximately 1380–1400 °C at a rate of approximately 25–30 °C s?1. The association of the two lithologies in a composite clast allows, for the first time, an estimation of the cooling rate of a silicate vitrophyre in an aubrite of approximately 25–30 °C s?1. While we cannot completely rule out an impact origin of the clast, we present what we consider is very strong evidence that this composite clast is one of the elusive pyroclasts produced during pyroclastic volcanism on the aubrite parent body ( Wilson and Keil 1991 ). We further suggest that this clast was not ejected into space but retained on the aubrite parent body by virtue of the relatively large size of the clast of approximately 20 mm. Our modeling, taking into account the size of the clast, suggests that the aubrite parent body must have been between approximately 40 and 100 km in diameter, and that the melt from which the clast crystallized must have contained an estimated maximum range of allowed volatile mass fractions between approximately 500 and approximately 4500 ppm.  相似文献   
109.
The full set of high-resolution observations from the Galileo Ultraviolet Spectrometer (UVS) is analyzed to look for spectral trends across the surface of Europa. We provide the first disk-resolved map of the 280 nm SO2 absorption feature and investigate its relationship with sulfur and electron flux distributions as well as with surface features and relative surface ages. Our results have implications for exogenic and endogenic sources. The large-scale pattern in SO2 absorption band depth is again shown to be similar to the pattern of sulfur ion implantation, but with strong variations in band depth based on terrain. In particular, the young chaos units show stronger SO2 absorption bands than expected from the average pattern of sulfur ion flux, suggesting a local source of SO2 in those regions, or diapiric heating that leads to a sulfur-rich lag deposit.While the SO2 absorption feature is confined to the trailing hemisphere, the near UV albedo (300-310 nm) has a global pattern with a minimum at the center of the trailing hemisphere and a maximum at the center of the leading hemisphere. The global nature of the albedo pattern is suggestive of an exogenic source, and several possibilities are discussed. Like the SO2 absorption, the near UV albedo also has local variations that depend on terrain type and age.  相似文献   
110.
Abstract– The Opportunity rover of the Mars Exploration Rover mission encountered an isolated rock fragment with textural, mineralogical, and chemical properties similar to basaltic shergottites. This finding was confirmed by all rover instruments, and a comprehensive study of these results is reported here. Spectra from the miniature thermal emission spectrometer and the Panoramic Camera reveal a pyroxene‐rich mineralogy, which is also evident in Mössbauer spectra and in normative mineralogy derived from bulk chemistry measured by the alpha particle X‐ray spectrometer. The correspondence of Bounce Rock’s chemical composition with the composition of certain basaltic shergottites, especially Elephant Moraine (EET) 79001 lithology B and Queen Alexandra Range (QUE) 94201, is very close, with only Cl, Fe, and Ti exhibiting deviations. Chemical analyses further demonstrate characteristics typical of Mars such as the Fe/Mn ratio and P concentrations. Possible shock features support the idea that Bounce Rock was ejected from an impact crater, most likely in the Meridiani Planum region. Bopolu crater, 19.3 km in diameter, located 75 km to the southwest could be the source crater. To date, no other rocks of this composition have been encountered by any of the rovers on Mars. The finding of Bounce Rock by the Opportunity rover provides further direct evidence for an origin of basaltic shergottite meteorites from Mars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号